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Nonclassical Carbocations as €H Hydrogen Bond Donors
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Computed [B3LYP/6-31G(d,p) and MP2/6-31G(d,p)] structures and binding energies for complexes of
nonclassical cations (carbonium ions) with ammonia, in the gas phase and several solvents, are described.
Overall, nonclassical cations are found to be competerii@ydrogen bond donors. The potential relevance

of the C-H---N interactions holding the carbocati@mine complexes together for enzyme-catalyzed terpenoid
synthesis is discussed.

Introduction tions (unscaled). In some cases, the synchronous transit-guided
quasi-Newton (STQN) method, which searches for a transition
in enzyme active sites? The answer to this question is of state structure between specified reactant and product structures

. ! . 13 it
fundamental importance to the field of natural product biosyn- (?ST2);” was used to help locate transition structures. For
thesis due to the prevalence of carbocations in the putativeseveral transition structures, intrinsic reaction coordinate cal-
) et e . iond4 i i
mechanisms for terpenoid biosynthesis via terpenoid syntRases. Culations* were also used to verify their nature.
This is an extremely complicated question, however, whose __!Nteraction energies for various structures were computed as

answer depends on many different factors. Two of these factorstN€ difference in zero-point-corrected energies for complexes
are addressed herein using computational quantum chemistry@1d the sum of the energies for the separate components
First, we address the question of whether basic/nucleophilic (entropies are not included). Corrections to these complexation

molecules such as ammonia (a simple model of enzyme active€nergies for basis set superposition error were cqmputed fpr all
site residues such as lysine and histidine) will perturb the complexes an(_;i are |ncIude_d in all reported interaction enetyies.
structures of nonclassical ions through-B:+-X interactions These corrections are typicalty1.9 kcal/mol for our B3LYP/

(X = heteroatom with lone paiP;5 that is, will such interactions ~ 6-31+G(d,p) calculations and:2.2 keal/mol for our MP2/6-
change a preference for a nonclassical structure into a preferencé <1 G(d,p) calculations. Herein, negative interaction energies

for a classical structure? Second, we compare the strengths ofndicate exothermic complex formation.

C—H---X interactions (here, X= N) for which the G-H units Struct_ures were also reopumlzed at the _B3LYP/G-$Id,_|?;

are part of carbocations to otherEl---X interactions. level using the CPCM solvation model with UAKS ratfi
Continuum dielectric environments corresponding to three

Methods different solvents were used as follows: benzene (2.247),

All calculations were performed with GAUSSIANG3Ge- a typical nonpolar solvent and mimic of the hydrophobic cavities
ometries were optimized without symmetry constraints using Oﬁin found in terpenoid synthase active sitésjtromethane
the hybrid Hartree Fock/density functional theory (HF/DFT) (€ = 38.2), amoderately polar solvent; and waier{(78.39),
B3LYP/6-31+G(d,p) methodas well as the MP2/6-32G(d,p) a very polar solvent and a very simplified model of aqueous
method® Recent reports have compared the performance of the solution (the setting for most “background” reactions in biology).
B3LYP and MP2 methods in computing geometries and relative Structural drawings were produced using Ball & Stiék.
energies of delocalized carbocatidnis. general, discrepancies  Results and Discussion
between the two methods tend to occur when the potential

energy surface in the vipinity of a given structure is flat. Such catalyzed carbocation rearrangemédfitsye are examining
discrepancies can be V|eweq as pro.blems, but they aIsp SerVe‘complexes of nonclassical species with small models of protein
as markers for cases where intervention by noncovalent interac-.cique<° While various types of enzymenonclassical car-
tions or dyn_amlc effect_s_ may cqntrol ‘h‘? structures formedina bocation interactions that take advantage of the charge distribu-
given reaction. In addmon,.whlle density .fqnctlonal methods tion in these cations are possible (Figurétiyve focus herein
su_ch as B3LYP are often suitable for d_esc_rlblng hydrogen_bondson complexes with ammonia, a simple model of potentially
(since these are largely electrostatic in ngt&?eMPZ IS basic/nucleophilic residues such as histidine and ly&ir.
general!y more appropriate than DFT for de_scnbmg npncoval_ent Small Representative Systems in the Gas Phaséarious
interactions that are more dependent on dispersion |nteract|onsC2H5+ CsH7*. and GHe* isomers were characterized in both
(f(_)r example,n—n _stacklng)%l The use of diffuse funct|ons_ the presence and the absence ofsNBtructures were located
with density functional calculations was also recently dis- using both the B3LYP/6-3tG(d,p) and the MP2/6-32G(d,p)
2 1 1

cussed: . . . methods’® Nonclassical minima (bridged cations with hyper-
. All stationary points were ch.aracterlzed by frequency calcula- coordinate carbons or hydrogeh&r the GHs", CgH-*, and
tions, and reported energies include zero-point energy COMeC-c,Hqe* series are shown in Figure 2. These uncomplexed cations

*To whom correspondence should be addressed. E-mail: have been studied previously at various levels of thébsg
tantillo@chem.ucdavis.edu. only a few comments on their structures are included here.
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Can nonclassical carbocations (i.e., carbonium foeg)st

As part of a research program on the mechanisms of enzyme-
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Figure 1. (a) Computed (B3LYP/6-3£G(d,p), CHelp@! charges for
the bridged isomer of 41", a representative nonclassical cation. (b)
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Figure 3. Optimized geometries of representative classical cations and
their complexes with ammonia. Selected distances are shown in A,
and computed interaction energies are shown to the right of each
complex in kcal/mol [B3LYP/6-31G(d,p) in normal text, MP2/
6-31+G(d) in underlined italics}?

6-31+G(d,p), however, did lead to a methyl-bridged structure,
4b, in which the methyl group is rotated with respect to that in
4aso that one €H bond can interact weakly with the secondary
cation site. Reoptimizingb with B3LYP/6-31+G(d,p) led back
to 4a and reoptimizingda with MP2/6-3H-G(d,p) led back to

Electrostatic potential surface (red is least positive, and blue is most 40. Apparently, the two methods differ slightly in their

positive; the range is+0.20 to+0.27 au). (c) Potential interactions
between nonclassical carbocations and active site residues.

1.321
1303

4a (B3LYP)

4b (MP2)

Figure 2. Optimized geometries of £ls™ (1), CsH7" (2), and GHo"
(3—4) cations. Selected distances are shown in A [B3LYP/
6-31+G(d,p) in normal text; MP2/6-31G(d,p) in underlined italics].

As expected, optimizations on.8s" led to the bridged
structurel.?829For both the primary ¢H-" and GHg™ cations,
analogous bridged minim&,and3, were located. Structures
and 3 are extremely similar to each other; the addition of the
extra methyl group ir8 has only a small effect.

While B3LYP and MP2 gave similar results for structures

assessment of the abilities of methyl groups to stabilize cationic
centers through hyperconjugation and bridgifdt is worth
noting, however, that hyperconjugation and bridging are not
entirely different but can be viewed as different points along a
continuum describing the interaction of a carbocationic center
with a neighboring &C bond3!

Complexes with Ammonia.Next, we examined complexes
of these carbocations with NHFirst, for comparison, consider
the complexes of NElwith the classical secondary propyd)(
and butyl 6)2 cations shown in Figure 3. Not surprisingly;€l
bonds on electron deficient carbocationic centers seem to be
competent €&H hydrogen bond donors. The structures of the
carbocations are only very slightly perturbed upon complexation,
and N--H—C distances in these complexes are fairly short. For
comparison, computed-NH—C distances in BN--*H—Caikene
HsN--*H—Caiyne H3N:-*H—CN, HzN---H—CF;, H3N---

H—C1,2,4 5 tetrafluorobenzene@Nd FN*+*H—CpentachiorocyclopropanOM-
plexes are reported to be2.5—2.752d~.2 352d~2 150 ~2 45¢
~2.25 and ~2.2 AS9 respectively. Computed interaction
energies for the carbocatiowH; complexes in Figure 3 are
—11-12 kcal/mol. These values are larger in magnitude than
those computed previously for uncharged-N—C interactions,
which range from approximately-1 kcal/mol for simple
H3N---H—Cykenecomplexes to approximately5 kcal/mol for
H3N---H—CN.5&¢

Similarly, small geometric perturbations and large interaction
energies were observed for complexes of ammonia with
nonclassical ions. Structures of complexes with catibng
(Figure 2) are shown in FiguresZ, along with their computed
gas phase interaction energies.

1-3, they led to somewhat different structures for the secondary For structure 1, there are two types of nonequivalent

C4Hg™ cation. At the B3LYP/6-31+G(d,p) level, optimizations
on various rotamers (involving different orientations of the
potentially bridging methyl group) consistently led to structure
4a. Although benefiting from significant hyperconjugation (note
the>1.6 A C—C bond length and the 9C—C—C angle), this
cation does not bridge significantly. Optimizations with MP2/

hydrogens: the bridging hydrogen and the other four. Allowing
ammonia to interact with the bridging hydrogen, as expected,
results in deprotonation. Aligning the ammonia lone pair with
the other G-H bonds leads, upon geometry optimization, to
the complex shown at the left of Figure 4 in which a significant
N---H—C interaction is again observed. Although the symmetry
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ammonia. Selected distances are shown in A, and computed interaction

energies are shown to the left of each complex in kcal/mol [B3LYP/
6-31+G(d,p)].
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of the bridging interaction is lostthe distortion reflects the
donation of electron density by ammonia to one side of the
cation, thus slightly reducing the “electron demafidif that
site—bridging still persists.

A similar complex is observed for catigh(Figure 4, right).

Despite the presence of four types of nonequivalent hydrogens

in 2, only this complex is observed. Interaction of ammonia

with Ha (Scheme 1, blue) leads to deprotonation and cyclopro-

pane formation. Interaction of ammonia with any of the other
hydrogens ir2, however, leads to the complex shown in Figure
4 (Scheme 1, red). Binding of ammonia to either of protops H
(interaction A) leads directly to the complex shown (or its
enantiomer). Binding to protonscHinteractionB) leads to an
equivalent complex by slightly shifting and rotating the bridging
methyl group. Binding to protonsdhgain leads to an equivalent
complex, in this case via shifting ofHThese geometric changes
allow the ammonia lone pair to interact with the group that is
least involved in bridging. In other words, the donation of

Figure 5. Optimized geometries of complexes of cati@nwith
ammonia. Selected distances are shown in A, and computed interaction
energies are shown to the left of each complex in kcal/mol [B3LYP/
6-31+G(d,p)].

N---H—C angle was held constant at 248s value in the fully
optimized2-NH3; complex) and the N-H distance was varied
from 1.75 to 3.00 A in 0.25 A increments while the remainder
of the complex was allowed to relax. TReNH3 binding energy
was most favorable at 2.00 A (note that the optimizee- i
distance for this complex is 2.04 A, as shown in Figure 4) and
decreased steadily as the distance was increased from this value
(at 3.00 A, the binding energy was 4.6 kcal/mol less favorable
than at 2.00 A). As the N-H distance was increased, the-8
distance decreased slightly (to 1.088 A at ar*N distance of
3.00 A) and the bridging Cigroup moved slightly closer to
the carbon involved in the NH—C interaction (the &-C
distance decreased by a maximunm~d3.03 A). In the second
scan, the N-H distance was held constant at 2.04 A (its value
in the fully optimized2-NHs; complex) and the N-H-:-C (of

the CH group not directly involved in the N-H—C interaction)
angle was varied from 115 to 17%hile the remainder of the
complex was allowed to relax; this allowed the Ngroup to
sample different positions around the-& group while not
deviating significantly from the approximate plane in which the
N---CH,—CH; substructure resides. Over the range of angles
explored, the maximum change in the binding energy was only
1.0 kcal/mol and no significant changes to bond distances were
observed.

Interaction of ammonia with catiod (Figure 2) is similar to
that for 2. In cation 3, all nine protons are nonequivalent.
Interaction of ammonia with either of the protons of the
methylene group in the bridging ethyl unit leads to deprotonation
and methylcyclopropane formation. Interaction with the protons
on the terminal methylene leads to the complexes shown in
Figure 5, which differ in the relative positions of the ammonia
and methyl groups (cis or trans). Binding to the protons of the
internal (nonbridging) methylene group leads to the same
complexes via slight shifting and rotation of the ethyl group as
described above for the methyl group of catibhe interaction
energies for the two complexes in Figure 5 are of a slightly
smaller magnitude than that for tf2eNHs; complex, probably

electron density from the ammonia helps to stabilize one corner as a result of the inherent stabilization of the cation (through

of the protonated cyclopropane unit, allowing the rest of the

hyperconjugation and/or polarization) provided by the appended

structure to redistribute its electron density and charge in the methyl group in3. MP2/6-3H-G(d,p) calculations on thes

most favorable way.
The nature of the binding for th@NH3; complex, as a

NH3 complexes lead, via movement of the bridging hydrogen,
to the4b complexes discussed below.

representative example, was examined in more detail. First, the Binding to cationglaand4b is more complicated. Optimized

interaction energy for th&-NH;3; complex was analyzed using
the Morokuma-Ziegler decomposition schemi&This analysis

structures forda:NH3; and 4b-NH3; complexes are shown in
Figures 6 and 7, respectively. It is perhaps easiest to make sense

indicates that electrostatic interactions contribute approximately of these complexes by considering the various complexation
twice as much as do orbital interactions to the binding energy sites in4b (drawn below). Let’s first consider the B3LYP/
for 2:NHs. In addition, the distance and angular dependence of 6-31+G(d,p) results. Interaction of NfHwith H, leads to the

the2-NHs interaction were probed through two relaxed potential
energy scans [using B3LYP/6-35G(d,p)]. In the first, the

4a-NHs(methine) complex shown in Figure 6; no analogous
complex of4b (i.e., with the bridging methyl rotated) could be
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4a - NH; (methine, B3LYP) 4a - NH, (methylene, B3LYP)

4a - NH, (bridge, B3LYP)

Figure 6. Optimized geometries of complexes of catida with 4b + NH; (bridge-out, MP2) 4b - NH (bridge-in, B3LYP)
ammonia. Selected distances are shown in A, and computed interaction

energies are shown to the left of each complex in kcal/mol [B3LYp/ Figure 7. Optimized geometries of complexes of catidh with
6-31+G(d,p)]. ammonia. Selected distances are shown in A, and computed interaction

energies are shown next to each complex [B3LYP/6-G1d,p) in bold;

) . . MP2/6-3H-G(d,p) in bold underlined italics]. MP2 interaction energies
found at the B3LYP/6-3+G(d,p) level. Interaction of Nkwith are relative to fredb and ammonia while B3LYP interaction energies

Hp leads to thetb-NHz (methylene) complex shown in Figure ;¢ relative to freeta and ammonia.

7; in this case, no analogous complex4z could be found.

Interaction of NH with H¢ leads to theda:NH3 (methylene) TABLE 1: Computed Interaction Energies [B3LYP/
complex shown in Figure 6 and interaction of pWith either 6-31+G(d,p)] for Complexes in Figures 3-7 (the CPCM

. o Method with UAKS Radii Was Used for Solvation
Hq or He leads to thela:NH; (bridge) complex shown in Figure =1 |1ations with Dielectric Constants of 2.247, 38.2, and

6. In short, small changes to the conformation of the bridging 7g.39 for Benzene, Nitromethane, and Water, Respectively)
methyl group occur readily, allowing complexes of typts

and4b to both form. Remarkably, interaction of Nkvith Hs

interaction energy (kcal/mol)

does not lead to deprotonation, instead leading to4thélH; complex gas phase benzene nitromethane  water
(bridge-in) complex shown in Figure 7. When these various 1-NHs; —13.65 —5.67 —0.49 +6.73
structures were sought at the MP2/6+33(d,p) level, only4b- 2:NHs —11.38 —6.69 —3.12 +0.12
NH3 (methine) and4b-NH;3 (bridge-out) structures (Figure 7) g“:B (trans) _18'% _ggg _g'gg ig-gg
or methylcyclopropan&lHs™ complexes could be found. 4a—N|f|§(zlnSw)ethine) 803 —6.47 576 1108
4aNH3 (methylene) —8.33  —4.57 -1.73 +0.84
He H 4aNHjs (bridge) -9.18 -5.16 -1.93 +0.62

Hf\f/ d 4b:NH3 (methylene) —8.0@ c c c
R 4h-NHj3 (bridge-in) —-8.49 —-3.82 d +0.9¢
,/@ ' 5:NH; —-11.99 —-6.94 —-3.01 +1.17
HSMHC 6:NH3 —-11.19 —6.40 —3.68 +1.24
H Hp aThis structure has a small imaginary frequency2® cnt?)
4b corresponding to rotation of the GH-NH3 substructure. Because of

the flatness of the energy surface near this structure, we were unable
to locate a discrete minimurfi Binding energies vs freda. ¢ See ref

Overall, while various €H and C-C bond lengths in 35.9Went to NH*methylcyclopropane complex.

carbocationsl—4 change slightly upon complexation, intact

nonclassical species do indeed persist in many cases. Thalistances were all less than 0.06 A and changes-teHN-C
N-++H—C interaction energies for these complexes are consider-distances were all less than 0.09 A; most changes were
able, comparable to those for Midlassical cation complexes considerably smaller than these maximum values (see Support-
and generally at least double in magnitude those computed foring Information for geometriesy. Interaction energies for these
overall neutral N--H—C interaction$®9 The portions of the complexes (Table 1) were reduced in magnitude as the polarity
potential energy surfaces near these minima are extremely flat,of the surrounding environment increased, as expected given

however, and estimated barriers for addition of \dtl depro- that the N--H—C interactions in question are primarily elec-

tonation are generally quite smak{ kcal/mol), but a similar trostatic in naturé:4a

situation also exists for classical cations. Potential Biological Implications. Terpenoid synthases
Solvent Effects.The structures shown in Figures-Z2 were produce a plethora of polycyclic natural products from only a

also examined using continuum solvation calculations [CPCM- few acyclic precursorsin doing so, they control both the regio-
(UAKS)-B3LYP/6-314-G(d,p)] 1617 Dielectric constants corre-  and stereoselectivity of various carbecarbon bond forming
sponding to benzene, nitromethane, and water were used toand rearrangement reactions with apparent ease, often solving
survey a wide range of solvent polarity. In general, only very several regio- and stereochemical problems in a single enzyme-
small structural changes were observed when the gas phaseatalyzed transformation. The mechanisms of these impressive
structures were reoptimized in solvent. Except for the few casesenzyme-catalyzed polycyclization reactions have been discussed
in which deprotonation occurred, changes to the@Cand C-H for decades, and many mechanistic proposals have led to elegant
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Recently, He and Cane discussed the possibility that nonclas-
sical cations such aga are involved in germacradienol/
germacrene D synthase mechanisfislo test whether non-
classical species are also viable for large and somewhat
conformationally constrained species such as these, we examined
structures related téa and their complexes with N(AB3LYP/
6-31+G(d,p) calculations indicate th@ais not a minimum in
the gas phase (attempted optimization led to species with allylic
cation substructures), but the closely relaféds (Figure 8a).
Several complexes betweétb and NH; were located, each
involving slight changes to the carbocation geometry but
maintaining its nonclassical structure overall, even when the
NHs interacts directly with hydrogens whose removal (depro-
tonation) would lead to cyclopropanes or alkenes; representative
structures are shown in Figure -8d.4° Much additional work
will be required to arrive at a complete picture of this
mechanism, but our calculations suggest that if such carbocations
are indeed formed in the active site of the enzyme, they may
participate in favorable noncovalent interactions with active site
residues.

: D © L= ind ot

Figure 8. Compound7b (a) and its NH complexes (b-d). Selected
distances are shown in A, and computed interaction energies for (b
d) are —8.98, —8.26, and—6.96 kcal/mol, respectively [B3LYP/6-
31+G(d,p)], in the gas phaseé.

CH, CH,

biomimetic syntheses of terpenoids and related polycydies.
Most proposed mechanisms involve the attack-tfonds onto
carbocations and the interconversion of carbocations via [1,2]-
sigmatropic shifts and transannular shifts of hydrogen.

An unanswered question in this field is when and where Conclusions
nonclassical carbocatiohare involved in terpenoid synthase
mechanisms. Although the intermediacy of nonclassical species
has been suggested by various investigafor®,many mecha-
nistic proposals still focus on the interconversion of classical

Overall, our calculations indicate that interactions between
nonclassical cations and amines are energetically favorable and
their interaction energies are in the range of those for more

carbocations. Many studies on simple analogues of biologically traditional hydrogen bonds. In adplition, ;tructural perturb.aFions
relevant carbocations have been repoffede but the effects to nonclassical structures upon interaction are often_ m|n!mal.
of surrounding enzyme active sites on cation structures and!N Short, carbocations (both carbonium and carbenium ions)
rearrangement barriers have not been systematically appear to be competent hydrogen bond donors. Fur_ther studlgs
explored?sac.d.9i Nonclassical carbocations are common in on other carbocations and other model enzyme residues are in

nonpolar environments such as the gas phase and have eveR©9r€SS:
been shown to exist in aqueous solutigi? It is reasonable,
therefore, to think that they may also exist in enzyme active
sites, especially in the relatively nonpolar active sites of
terpenoid synthases, which are typically lined with aromatic and
other hydrophobic residué8.Some terpenoid synthase active
sites also contain residues that have hydrogen bond donor an
acceptor groups such as histidine, tyrosine, tryptophan, and
asparaginé® so various types of enzym@onclassical cation
interactions are possible (Figure 1).

The calculations described above indicate that nonclassical
cations can exist in the presence of basic groups and that
N---H—C interactions are associated with significant binding
energies. En_zyme _active sites, even when lined with hydrophobiC g otarences and Notes
and aromatic residues, are not homogeneous. Even so, the eading ref | \aqt, Chem. Red983
continuum solvation calculations described above using benzene, ((l)l))Bngvnfz_'gg (ﬁitehrggfnensqé f\?seb(;)s:hslgjer, o R Nonciaegesl
as Fhe solvent provide a reasonable mOdel _Of a. non.pmarlon Problem Plenum: New York, 1977. (c) Olah, G. A,; Laali, K. K;
environment, and the strengths of-NH—C interactions in this Wang Q.; Prakash, S. G. KOnium lons Wiley-Interscience: New York,
environment typically range from-5 to —7 kcal/mol (Table 1998.

: _ (2) For leading references, see (a) Cane, DCEem. Re. 1990 90,
1). Although the potential energy surfaces around the nonclas-;ge6™ 103, (b) Wendt, K. U.: Schulz, G. E. Corey. E. J.: Liu, DARGewW.

sical cation--ammonia complexes are relatively flat, enzymes chem., Int. Ed200q 39, 2812-2833. (c) Abe, I.; Rohmer, M.; Prestwich,
are skilled at preorganization and could possibly protect G.D.Chem. Re. 1993 93, 2189-2206.

nonclassical structures from addition or deprotonation by _ (3) (&) For a recent example and leading references oh€X (X
— . . 7 =N, O) interactions in biological systems, see Pierce, A. C.; ter Haar, E.;
limiting the movements of potential nucleophiles and bases. This ginch, H. M.; Kay, D. P.; Patel, S. R.; Li, . Med. Chem2005 48,

issue will require further study, however. 1278-1281. (b) Calhorda, M. Xhem. Commur200Q 801—809.
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8718-8726 and references therein. (b) Moore Plummer, B. Bhys. Chem.

B 2004 108 19582-19588. (c) Herrebout, W. A.; Melikova, S. M.;
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